Limiting efficiency of indoor silicon photovoltaic devices
نویسندگان
چکیده
منابع مشابه
Quantum Efficiency Modeling of Amorphous/Crystalline Silicon Heterojunction Photovoltaic Devices
Amorphous/crystalline silicon (a-Si/c-Si) heterojunctions are of particular importance in photovoltaic (PV) energy conversion in a cost-effective way. This is principally due to the low temperature (low-T) nature of the process. In this work, we have analyzed a (n)a-Si/(i)a-Si/(p)cSi heterojunction solar cell structure using theoretical models for internal quantum yield (IQY) and I-V behavior. ...
متن کاملMicro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency
Related Articles Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode Appl. Phys. Lett. 101, 163303 (2012) Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode APL: Org. Electron. Photonics 5, 234 (2012) Development of pulsed laser deposition for CdS/CdTe thin film sol...
متن کاملIR light harvesting with silicon microspheres - application to photovoltaic devices
Single-junction photovoltaic devices suffer from intrinsic obstacles limiting their efficiency to a top value dictated by the well-known Shockley–Queisser (SQ) limit [1]. The most fundamental limitation is given by the energy bandgap of the semiconductor, which determines the minimum energy of photons that can be converted into electron-hole pairs. In the case of silicon a large percentage of i...
متن کاملSolution-Processable Silicon Phthalocyanines in Electroluminescent and Photovoltaic Devices
Phthalocyanines and their main group and metal complexes are important classes of organic semiconductor materials but are usually highly insoluble and so frequently need to be processed by vacuum deposition in devices. We report two highly soluble silicon phthalocyanine (SiPc) diester compounds and demonstrate their potential as organic semiconductor materials. Near-infrared (λ(EL) = 698-709 nm...
متن کاملCu nanoparticles enable plasmonic-improved silicon photovoltaic devices.
This work examines the effect of copper nanoparticles (Cu NPs) on the photocurrent efficiency of silicon photovoltaic (Si PV) devices. An optimized synthesis of stable Cu NPs is reported together with a procedure for their immobilization on the Si PV surface. A comprehensive analysis of the photocurrent and power dependence of the Cu NPs surface coverage and size is presented. A decrease in pho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2018
ISSN: 1094-4087
DOI: 10.1364/oe.26.028238